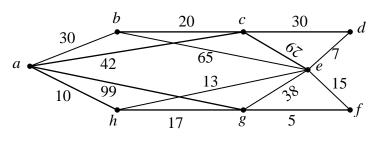
RAMAKRISHNA MISSION VIDYAMANDIRA					
		(Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2018			
		SECOND YEAR [BATCH 2017-20]			
		15/12/2018 COMPUTER SCIENCE (Honours) 11 am – 1 pm Paper : III [Gr- A] Full M	larks : 40		
		(Use a separate Answer book for each Unit)			
		Unit-I			
		Cint-1			
An	swer	any one question from Question Nos. 1 & 2:	1 X 5		
1.	a)	Find a closed form for the generating function for the following sequence:	21/2		
		0.1, -2, 4, -8, 16, -32, 64,			
	b)	Prove that every field is an integral domain.	21/2		
2.	a)	State and prove Pigeon Hole principle.	4		
	b)	What is Hasse Diagram?	1		
An	swer	any two questions from Question Nos. 3 to 6:	2 X 10		
3.	a)	For three non-empty sets A, B and C prove that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.	3		
	b)	What do you mean by equivalence class? Explain with an example.	2		
	c)	If $f: A \to B$ and $g: B \to C$ be one-to-one, onto functions, then show that $(g_0 f)$ is bijective			
		function and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.	5		
4.	a)	Define Field with example.	2		
	b)	Draw the hasse diagram of the poset (S, l) where $S = \{1, 2, 3, 4, 6, 8, 8, 12, 18\}$ and relation 'l' is			
		defined such that $\frac{a}{b}$ means b is divisible by a.			
		Also find the maximal, minimal, greatest and least elements of this poset.	2+2		
	c)	A computer system considers a string of decimal digits as a valid codeword if it contains			
		even number of 0 (zero)'s. Find a recurrence relation to find the number of valid <i>n</i> -digit codewords.	4		
5.	a)	Find the number of non-negative integral solutions of $x_1 + x_2 + x_3 + x_4 = 10$, where			
		$x_1 \le 5, x_2 \le 4, x_3 \le 5$ and $x_4 \le 7$.	4		
	b)	Prove that the set $\{0, 1, 2, 3, 4\}$ is a finite abelian group under addition modulo 5 as composition.	3		
	c)	Prove that the necessary and sufficient condition for a non-empty subset H of a group $(G, *)$			
	,	to be a subgroup is $a \in H, b \in H \Longrightarrow a * b^{-1} \in H$.	3		
			-		

- a) In a book of 400 pages, a proof reader finds no error in 230 pages, in 120 pages one error on each page, in 45 pages two errors on each page and in 5 pages 3 errors on each page. Fit a Poisson Distribution to the data and calculate the theoretical frequencies.
 - b) The probability of a man hitting a target is $\frac{1}{4}$. If he fires 7 times, find the probability of his hitting the target at least twice.
 - c) Define Normal distribution.

Unit-II

Answer **any one** question from **Question Nos. 7 to 8**:



From vertex 'a', show the BFS and DFS of the graph.

8.	a) b)	"A simple graph with <i>n</i> vertices and <i>k</i> components can have at most $(n-k)(n-k+1)/2$ edges" – prove it. "Any connected graph with <i>n</i> vertices and $(n-1)$ edges is a tree" – prove it.	3 2	
Answer any one question from Question Nos. 9 to 10:				
9.	a)	What do you mean by arbitrarily traceable graph? Given the set of all spanning trees of a graph as input, how will you generate the graph?	1+3	
	b)	Prove that for a tree with n_i number of nodes of degree <i>i</i> , where $0 \le i \le m$, <i>m</i> being the		
		maximum degree of a node, the total number of leaf nodes will be,	4	
		$n_0 = 1 + \sum_{K=2}^{m} (K - 1) n_K$		
	c)	Define Hamiltonian path of a graph.	2	
10.	a)	Prove that the number of odd-degree services in a simple connected graph is always even.	4	
	b)	When are two graphs G and G^* said to be isomorphic?	3	
	c)	State and prove the necessary and sufficient conditions for a graph G to be an Euler graph.	3	

_____ × _____

[2]

21/2+21/2

4

4

2

1 X 5